Closed

Sequence and Cauchy sequence

This project received 7 bids from talented freelancers with an average bid price of $298 USD.

Get free quotes for a project like this
Employer working
Skills Required
Project Budget
$250 - $750 USD
Total Bids
7
Project Description

. I need to get this done in 3 hours.. i am attaching the notes as well.. is there anyone who can help? I will pay 15 dollar. i am attaching the notes and the question as well. I GIVE HIGH RATE. If you can do few of them, please ask me ..im online and we can negotiate

1)Find a sequence of real numbers {a_i} such that lim┬(n→∞) a_n does not exist , but it has 3 subsequential limits of 0,1,2.

2) Assume {p_n}, and {r_n} are Cauchy sequences in ℝ . Using the definition of a Cauchy sequence prove that {p_n+r_n} is a Cauchy sequence in ℝ.

3) Prove that {1/n^2 } is a Cauchy sequence in ℝ.
4) Assume {p_n}, and {r_n} are Cauchy sequences in ℝ . Using the definition of a Cauchy sequence prove that {p_n+r_n} is a Cauchy sequence in ℝ.

5). Suppose that {a_i} is a Cauchy sequence in a metric space X,d and lim┬(n→∞) a_n=p. Suppose, in addition, {b_i} is a sequence such that d(a_n,b_n)<1/n for all integers n. Prove that lim┬(n→∞) b_n=p.
6) 3. Let {a_i} be a sequence in ℝ. Prove lim┬(n→∞) a_n=0, if and only if, lim┬(n→∞) |a_n |=0.
If lim┬(n→∞) |a_n |=1, is it true that lim┬(n→∞) a_n=1? Prove your answer
7) Let {a_i} be a sequence in a metric space X,d. Prove that lim┬(n→∞) a_n=p if and only if lim┬(n→∞) d(a_n,p)=0.

8) Suppose that {a_i} is a sequence in ℝ such that lim┬(n→∞) a_n=0. Suppose that {b_i} is a sequence in ℝ such that |b_i |≤M, for all i where M is some positive real number. Prove from the definition of a limit of a sequence that
lim┬(n→∞) 〖(a〗_n b_n)=0.

Looking to make some money?

  • Set your budget and the timeframe
  • Outline your proposal
  • Get paid for your work

Hire Freelancers who also bid on this project

    • Forbes
    • The New York Times
    • Time
    • Wall Street Journal
    • Times Online