Although the following procedures are more or less sequential, be certain you read through and

understand all the procedures and suggestions before you begin to actually construct a flow net.

1. Ensure that the use of a flow net is valid.

(a) Flow is steady state.

(c) Boundary conditions are known or can be approximated well.

2. Prepare for a trial-and-error solution: there is no unique solution.

3. Ensure that the boundaries of the flow field are drawn to scale.

4. Define the boundaries, and determine the nature of each boundary.

(a) equipotential, or constant-head, boundary

(b) flow line, or no-flow, boundary: commonly an impermeable boundary

(c) known-head boundary; commonly the water table

(d) most often encountered, two equipotential boundaries and two flow line boundaries.

5. Determine the symmetry of the flow field, if any. This may reduce the work involved-for

example, bilateral symmetry would require construction of only half of the flow net.

6. Begin iterative construction of flow lines and perpendicular equipotential lines.

(a) Draw flow directions at equipotential boundaries.

(b) Draw predefined, or boundary, flow lines.

(c) Visualize the number of flow lines that provide a smooth transition between the boundary

flow lines.

(d) You will draw only a few of these, perhaps two or three.

7. A fundamental requirement of a flow net is that flow in each of the flow tubes must be equal.

Thus, because tubes that are longer will have a lower hydraulic gradient, they must therefore

be wider in order to carry the same flow. For this reason, when you draw a flow net that

curves (e.g., the flow field under the dam in Figure 1), you must draw flow tubes that are

progressively wider with an increase in path length or radius of curvature. In Figure 1, flow

tubes will widen with depth.

8. In terms of flow net construction, a simpler restatement of the above is in order to maintain

“squares” (Δw = Δl), Δw must increase as Δl increases.

9. Start at the most constricted part of the flow field, and lightly sketch a few flow lines and

equipotential lines.

10. Each area you construct must be correct before continuing (if there is any error, all further

work will be pointless).

11. Construct smooth lines that define equidimensional enclosures, or “squares”. (You can check

this by drawing circles inside the enclosures that are tangential at the four midpoints, or you

can connect midpoints of the sides with curved lines and see if they are of equal length.)

12. All intersections of lines must be orthogonal.

13. Adjust by trial and error. Your first attempt at drawing a flow net like that in Figure 1 may

take an hour or more.

14. Maintain a sense of humor.

15. When your flow net looks complete, you can check your construction by lightly sketching

diagonals across the squares. These diagonals also will form a flow net that is smooth,

encloses squares, and has perpendicular intersections.

You can do it this way, or you can do it your way. There are no required steps or procedures, but the

suggestions above should help you avoid problems. A net that goes astray can usually be traced back

to a violation of one of the above steps (most commonly to steps 8 and 10).

In the exercise that follows, before starting any flow net construction, think the problem through

Skills: Civil Engineering, Geotechnical Engineering

See more: flow net diagram, how to draw flow lines groundwater, sheet pile flow net model, how to draw flow nets, groundwater flow nets, lab 8 modeling groundwater flow with flow nets, flow net in fluid mechanics pdf, flow net examples, I can do what you need with full professionalism, Try me and we will work with each other for a long time, thanks., Design Landscape of backyard with 3D Modeling, Modify this MP so that the command prompt includes a counter that increments for each command executed (starting with 1). Your, a program that replaces each line of a file with its reverse, groundwater modeling, how to make money with 3d modeling, groundwater modeling jobs, Freelancer are charge a sliding fee based on your lifetime billing with each clients, freelance 3d modeling with blender, does graphic design help with digital modeling, 3d car modeling with rhinoceros free, 3d car modeling with rhinoceros

About the Employer:
( 0 reviews ) West Footscray, Australia

Project ID: #17045446

9 freelancers are bidding on average $135 for this job


Hello dear, I am a M.Sc. structural engineer, I am expert in Geo-technical engineering so i can help you for sure in your project. Please check my portfolio and reviews. Thanks

$50 AUD in 2 days
(41 Reviews)
$155 AUD in 3 days
(1 Review)
$155 AUD in 3 days
(0 Reviews)

Hello. I am civil engineer and pursuing msc in geotechnical engineering. I can do your work. Consider me for the job please. regards

$250 AUD in 3 days
(0 Reviews)

Hello! I can do your project using MATLAB. How about? We can discuss more detail over chatting. Thanks.

$50 AUD in 3 days
(0 Reviews)

Dear. please sendme the problem statement . either it is a dam or canal

$111 AUD in 2 days
(0 Reviews)

Most important step in drawing flow-net is to assign boundary conditions to the problem. These conditions would be established first and then the drawing of flow-lines and equipotential-lines would be drawn in such a w More

$233 AUD in 5 days
(0 Reviews)
$155 AUD in 3 days
(0 Reviews)


$55 AUD in 2 days
(0 Reviews)