More about my key skills:
- Neural Networks components: Dropout, Batch Normalization, Layer Normalization.
- Neural Network Architectures: CNN, RNN, GRU, LSTM, AlexNet, ResNet, VGG, WGAN-GP.
- Loss function: Connectionist Temporal Classification.
- Machine Learning Algorithms: Linear regression, Logistic Regression, KNN, K-means, K-means ++, Decision Tree Regressor & Classifier, Random Forest Classifier, AdaBoost Classifier, Gradient Boost Regressor & Classifier.
- Optimization algorithms: Gradient Descent, Mini-Batch Stochastic Gradient Descent, Stochastic Gradient Descent with Momentum, AdaGrad, RMSProp, Adam.
- Regularization: L1, L2.
- Understanding parameter optimization using the chain rule